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A new c lass  of s e l f - s i m i l a r  solutions of the externa l  condensation p rob lem is const ructed,  which 
takes account  of the change in the p roces s  p a r a m e t e r s  along the length of the condensation s e c -  
tion. 

Known s e l f - s i m i l a r  solutions of the ex te rna l  condensation problem p e r m i t  the computation of the vapor  
condensation p roce s s  on a f lat  ve r t i ca l  impermeab le  sur face  during motion of the condensate f i lm under  the 
effect  of g rav i ta t ion  [1, 2], or  on a hor izontal  f lat  impermeab le  sur face  during entra  imnent of the f i lm by a m o v -  
ing vapor  s t r e a m  [3, 4]. Intensif icat ion of the condensation p roce s s  is achieved by suction of the condensate 
f i lm through a solid porous wall,  by blowing the f i lm with a vapor  s t r e a m ,  by using condensers  with a complex 
sur face  shape.  Construct ion of the s e l f - s i m i l a r  solutions taking account of the combined influence of the e x t e r -  
nal m a s s  force  field,  which is va r iab le  along the length of the condensation sect ion (during condensation on 
curved  sur faces ) ,  the inhomogeneous tangential  s t r e s s ,  the p r e s s u r e  gradient ,  and blowing (suction) of the conden- 
sate through a solid wall  cons iderably  broadens the domain of p rac t i ca l  appl icat ion of the s e l f - s i m i l a r  
methods .  

The s y s t e m  of equations descr ib ing  the fi lm condensation p rocess  for sa tura t ion vapor  on a curv i l inea r  
sur face  inthe p re sence  of f luidblowing (suction) through a solid wall  and tangential  s t r e s s  on the v a p o r - - l i q u i d  
in terface ,  has the fo rm 

where  f0(x) = --(1/p)(SP/Sx) + g cos a.  
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System (6)is written 
T,)/f~(x) as: 
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Fig. 1. Dependence of the dimensionless condensate film thickness 
on the solid wall curvature ,  the blowing (suction) intensity of the liquid 
through the wall, and the tangent[al s t ress  on the interphasal  surface:  
I) C 1 =--0.2; Co=C 3 =0; 2) C 3 =--0.5; C0 =CI=0; 3) C I =--0.i; C0=C 3 = 
0;4) C 0=C I=C 3=0;5) C 3=0.2; C o=C i=0; 6) C O =2; Ci=C 3=0; 7) C i= 
0.2; C 0=C 3=0. 

Fig. 2. Dimensionless velocity of the condensate film in the presence 
of a tangential stress onthe interphasal surface: 1) C 3 =--0.6; 2) C 3 = 
--0.5; 3) C 3 =--0.2; 4) C 3 =0; 5) C 3 =0.6. 
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For  se l f - s imi la r  solutions to exist it is necessa ry  that the functions fi have the following form: 

fo = DxC*; fi = - -  Ct v-~176 f0~ ; f2 = C2 = Tw - -  T, = AT =const; 

:~ = C3 v-o.~ xO.~5/o,7~. 

(8) 

(9) 

The constants Ci are :  Co, the surface curvature  and the p ressu re  gradient; C1, the blowing (Cl>0) or  suction 
(C 1 < 0) intensity of the fluid through the solid wall; C3, the magnitude of the tangential s t r e s s  on the liquid-- 
vapor interphasal  surface.  

Condensation occurs  on the upper bulkhead of liquid propellant tanks dur ingpressu r i za t ionby  a vapor and 
the condensate film hence moves under the effect of gravitation and the tangential s t r e s s  causedby the injected 
vapor.  The projections of the gravity force on the genera tor  of the ellipsoidal bulkhead of the tank and the 
distribution of the tangential s t ress  on the vapor -- liquid interphasal  surface are approximated by relationships 
(9) with a good degree of accuracy  when the spraying a tomizers  are  central ly a r ranged .  The distributions of 
the gravitational and tangential s t ress  forces  are  also approximated by the dependences, of fi during condensa- 
tion of a moving vapor on the walls of converging tubes and nozzles .  Suction of the condensate is usedto  diminish 
the fraction of the liquid phase in the vapor s t ream.  

System (7)-(8)was solved by numerica l  integration and success ive  approximations.  The difficulty in the 
numerical  solution of boundary-value problem (7) is that the position of the boundary ~75 is not known and should 
be determined f rom the additional condition(8). Finding the dimensionless film thickness 775 is per formed by 
a simple gradient  method from the condition 
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in the following sequence. The initial approximations F~'(0), O~(0), ~61 are given in the f i r s t  stage of the i tera-  
tion process  andsys tem (7) is in tegratednumerical ly  as a system with ini t ialdata.  Projections of the gradient 
of the quality function Ia re  foundin the space F"(0), | ~5 by a difference method. A step is taken in the 
direction of the antigradient of the quality function, andref ined values of F~'(0), | ~52 are found. Then 
the procedure is repeated.  The calculations are cutoff  under the condition I< 10 -a. 

The method of directed search used for r15 affords a savings of machine time as compared with the 
method in [i]. 

The first approximation system of the successive approximations has the form 

F ~ " + I = 0 ;  0~=0;  ~t=0: F ' = 0 ;  

"q = ~ :  F" = C~; 

The second approximatioh system is written thus: 
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As a resul t  of solving sys tem (10), (11) for the s t ream functton and the temperature  in the liquid film, we obtain 
the following dependences: 
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Substituting (12) into (8), we find a relationship for the dimensionless film thickness T16- Higher approximations 
are constructed analogously. 

The liquid discharge in the condensate film is determined from the dependence 
6 

G = .[ pudy = F (a16) v ~ x 0 ~5 fo.25 O, 
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the friction on the solid wall equals 

Ou = F" 
Oy 

and the heat flux in the solidwall  is found bymeans  of the relationship 
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The f i r s t  approximat ion  s y s t em  (10) does not take accountof  the convective t e r m s  in the momentum and 
energy  equations of the condensate f i lm.  Compar ing the resu l t s  of a success ive  approximat ion  computat ion with 
the exact  numer ica l  solution shows that  for  fluids whose Prandt[  n u m b e r l s  P r  = v / a  > 10, finding F and 8 by 
means  of jus t the  f i r s t app rox ima t iony l e ld s  a re la t ive  e r r o r  in the de terminat ion  of the local heat  t r a n s f e r  c h a r -  
ac t e r i s t i c s  which is n o t g r e a t e r  than 2% in the range  0 <CpAT/h_< 2. Fo r  liquids whose Prandt l  number  is _>1, 
the re la t ive  e r r o r  does not exceed 6% in the s ame  range of CpAT/h .  The g r e a t e s t  deviation f rom the exact  
value is r ea l i zed  at  CpAT/h = 2. Taking account  of convective t e r m s  in the second approximat ion diminishes  
the re la t ive  e r r o r  to 0.8% for  liquids with Pr_>l .  The re la t ive  e r r o r  can r each  12-16% whenusing the f i r s t  
two approximat ions  in a computation of the condensation of liquid me ta l s  (Pr  ~10-2-10-s) .  The re la t ive  e r r o r  
of the th i rd  approximat ion does not exceed 5% in this c a se .  Despi te  the awkwardness  of the th i rd -approx imat ion  
expres s ions ,  success ive  approximat ion is  cons iderably  s imp le r  and requ i res  less  t ime for  rea l iza t ion  than 
the numer ica l  solution of the boundary-value  prob lem (7). 

The sur face  shape is de te rmined  by the quantity C o . The film thickness inc reases  along the length of the 
condensation sect ion during condensation on su r faces  for  which C o < 1. 

The fi lm thickness is zero  a t the  initial point (x=0). In t h e c a s e  C0>l ,  an i n c r e a s e  in the condensate 
d ischarge  along the length of the condensation section is accompanied  by a diminution in the fi lm thickness,  
which is a r e s u l t o f  the abrupt  r i se  in the fluid veloci ty downst ream in the f i lm.  In this case  the format ion  and 
sepa ra t ionof  liquid drops  , caused by the Tay lo r  instabili ty,  shouldbe expec teda t  the beginning of the conden- 
sation sect ion.  Fo r  C o = 1 the film th ickness  r ema ins  constanta long the whole extent  of the condensation sect ion.  
The influence of wall  cu rva tu re ,  blowing (suction) of the liquid through the wall,  and sur face  fr ict ion on the film 
thickness is seen f rom Fig.  1 .  

In the p resence  of blowing {C~> 0), the conductive heat  flux in the film on the vapor  --  liquid interphasal  
su r face  exceeds  the heat  flux in the solid wall,  which is caused by accumulat ion of heat  by the inflowing fluid. 
The r e v e r s e  dependence is observed  for suction of the condensate through the solid wall  (C l < 0); i . e . ,  the t e m -  
pe ra tu re  gradient  near  the sol idwal l  exceeds the t empe ra tu r e  gradient  on the in terphasal  su r face .  Coincidence 
of the direct ions of ex terna l  m a s s  force  field and tangential  s t r e s s  actions on the l iquid--  vapor  in terphasal  s u r -  
face (C3> 0) a cce l e r a t e s  the f i lm flow; the veloci ty  profi le  hence approaches  the l inear .  When the direct ions of 
the externa l  m a s s  force  and the tangential  s t r e s s  fields a r e  opposite ,  the f i lm flow is re ta rded ,  the heat  flux is 
diminished,  and the veloci ty on the sur face  of the liquid fi lm (for C 3 < 0) m a y t a k e  a direct ion opposite to the 
velocity of the main  condensate s t r e a m  (Fig. 2). 

NOTATION 

x, y, coordinate axes  d i rec ted  along and n o r m a l t o  the solid wall; n, v, components of theveloe i ty  vec tor  
a longthe x and y axes;  Ts ,  Tw, vapor  sa tura t ion and solid wall  t e m p e r a t u r e s ;  P, p r e s s u r e ;  g, acce le ra t ion  
of gravi ty ;  v,/~, kLnetic and dynamic v iscos i t ies ;  p, condensate density; r s t r e a m  function; 5, condensate 
l ayer  thickness;  a, t he rm a l  diffusivity coefficient;  k, heat  conductivity coefficient; h, latent  heat  of condensa-  
tion; ~-, t angen t i a l ' s t r e s s ;  q, heat  flux; C i, constants ;  a ,  slope; F, d imensionless  dependent var iable ;  7, v a r i -  
able of the s imi l a r i ty  t r ans format ion ;  | d imensionless  t empera tu re ;  I, quality function. 
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